はじめに
エブリーでデータアナリストをしている近藤と申します。 元々サーバーエンジニアでGoを書いていましたが、昨年7月からデータアナリストとして働いています。 普段はデータガバナンスの整備やredashによるデータ提供、データによる営業支援といった業務を行っています。
因果関係と相関関係の理解
データ分析を行う意義は、データの規則性を見つけて活用し、ビジネスをドライブさせることです。 しかし、見つけた規則性の解釈を誤るとビジネスに役立たず、貴重なリソースを浪費してしまいます。 規則性を見つけて終わりではなく、見つけた規則性が一体何を意味するのかを常に考えなければいけません。
特に相関関係と因果関係の混同はよく起こりうる問題です。相関関係だけをみて因果関係があると判断すると、おそらく効果のある施策を打つことはできないでしょう。 因果関係と相関関係の違いの理解はデータ分析をする上では必須と言えます。
そこで、因果関係と相関関係を理解してデータ分析をするための考え方をまとめたスライドを作成しました。 テックブログなのにSEO最悪なのでCTOに怒られそうですが、自分が伝えたいことはスライドのほうが伝わるのでスライドにしました。 是非ご覧いただければ幸いです。
まとめ
相関関係を見つけると因果関係がどのように存在しているのかを考え、仮説を立ててリサーチデザインを決め、データを収集・分析し、因果関係に迫っていく必要があります。 相関関係と因果関係を混同しないように気をつけましょう!!